
9/7/16
 Clustering in Big Data
 1

Redfish, Pensacola, 2012

9/7/16 EAs in WSNs	

 2	

Amberjack 	

Pensacola, FL	

9/7/16	

 Visual Clustering	

 3	

Mudshark 	

Melbourne, Au	

9/7/16	

 Visual Clustering	

 4	

Wahoo and Ulua	

Maui, Hawaii	

I. BIG data HCM/FCM/GMD

Sockeye Salmon, Seattle, 1983

9/7/16
 Clustering in Big Data

Today’s Talk: Cluster
Analysis in BIG DATA

HCM/FCM/EM~GMD

c-means for BIG data

II. SL + siVAT for BIG data

sVAT visual assessment

clusiVAT algorithm

5	

9/7/16 EAs in WSNs	

 6	

Our Big Data Gang

Leckie

Bezdek

Rao

Hathaway

Extending fuzzy and probabilistic clustering to VL
data sets, Comp. Stat. And Analysis, 2006.

Approximate clustering in very large relational data,
IJIS, 2006.

Complexity reduction for large image processing,
IEEE SMC, 2002.

Scalable visual assessment of cluster tendency for
large data sets, Pattern Recognition, 2006.

Fuzzy c-Means Algorithms for Very Large Data,
IEEE TFS, 2012.

 A hybrid approach to clustering in big data, IEEE
Trans. Cybernetics, 2016.

Palani

Hall

Huband

Suthar

Pal

Kumar

9/7/16	

 Agrupamiento difuso en México	

 7	

2 Kinds of Basic Numerical Data for Pattern Recognition

Objects O= {o1, …, on} : oi = i-th physical object

Data xji = j-th (measured) feature of xi : 1 ≤ j ≤ p
Object X = {x1, …, xn} ⊂ Rp : xi = feature vector for oi

We often convert X→D with distance

€

dij = xi − xj

Relational R = [rij] = relationship (oi, oj)) or (xi, xj)
 Data sij = pairwise similarity (oi, oj) or (xi, xj)

€

dij

dij = pairwise dissimilarity (oi, oj) or (xi, xj) 	

Typically
(R = D)

€

dii = 0 : 1 ≤ i ≤ n
dij > 0 : 1 ≤ i,j ≤ n
dij = dji : 1 ≤ i ≠ j ≤ n

(Positive-definite)

(Symmetric)

Sizes : n = # samples; p = # dimensions

9/7/16	

 Clustering in Big Data 8

10>18 Exa –Yikes ! (B I G DATA)	

1015 Peta - Monster

Bytes Big Data (BD) in size (n, p)	

103 Kilo – small	

106 Mega - medium	

109 Giga - large	

1012 Terra – getting’ up there	

We can’t cluster or image data this big (in a single computer)… so …	

How Big is static BIG Data ?

Most BIG data methods build “cluster-friendly”
(loadable) subsets by sampling or chunking

9/7/16	

 Clustering in Big Data	

 9	

BDN

s

s

s

SD1

SD2

SDM

SDn

BDN-SDn

s

e

SD1

SD2

SDM

9/7/16	

 Clustering in Big Data	

BD∞ = X∞ or D∞ (Population)

BDN = XN or DN
(Unloadable)

Four Data Levels

SDn = Xn or Dn
(Loadable)

Sn = XS or DS
(Sample)

10	

Random
Progressive
Maximin

Big Data Objective = ACCELERATION

Big Data Objective = FEASIBILITY

9/7/16	

 Clustering in Big Data	

 11	

If Xn or Dn is Loadable we
can Quantitatively Compare

Lit-Clusters ↔ Approx. Clusters

If XN or DN is Unloadable
Comparison is impossible

case 2 validity rests with
“good” case 1 examples

Case 2 BD methods often provide acceleration and feasibility

9/7/16	

 Clustering in Big Data	

 12	

If XN or DN is Unloadable …
there are 3 basic approaches to scaling up

A*= [U*, V*] = exact (literal) partition and prototypes
A = [U, V] = (any) approximation to A* by (1) or (2)

Many of these methods can be used with other pattern
recognition algorithms. For clustering, we let …

Cluster a sample, non-iterative extension

Incremental/Distributed data clustering

Kernel-based methods, e.g., kFCM

9/7/16	

 Clustering in Big Data	

 13	

col k ➠ M’ship of ok in each cluster

Partition
Matrices

row i ➠ M’ship of all ok’s in cluster i
o1 ok on Objects

€

U =

u11  u1k  u1n

  

ui1  uik  uin

  

uc1  uck  ucn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

Membership
Functions

ui(ok)=uik=M’ship
of ok in cluster i

ui:O[0,1]

9/7/16	

 Clustering in Big Data	

 14	

Mhcn

€

uik = 1
i
∑

€

uik > 0
k
∑

€

uik ∈ {0,1}

1 0 0 0
0 1 0 0
0 0 1 1

Mfcn

same

same

€

uik ∈ [0,1]

1 0
0 0
0 1

.07 .44

.91 .06

.02 .50

Mpcn

€

uik ≤ c
i=1

c
∑

same

same

1 .44
0 .52
1 .38

1
0
0

.07

.91

.02

Row sums

Col sums

M’ships

Set Name

Take a 2nd

Example

Crisp Fuzzy/Prob Possibilistic

€

⊂

€

⊂

9/7/16	

 15	

€

U∈Mfcn
V∈ℜcp

minimize Jm(U,V) = uik
m∑∑ xk − vi A

2⎧
⎨
⎩

⎫
⎬
⎭

Optimization
Problem, m≥1

Unknowns

Clustering in Big Data	

Inputs Object data

€

X = {x1,…,xn } ⊂ ℜp

(Fuzzy) Partition

€

U∈Mfcn

Prototypes

€

V = {v1,…,vc } ∈ℜ
cp

€

Jm(U,V) = uik
m xk − vi

A

2

i=1

c
∑

k=1

n
∑Objective function

€

xk − vi A
2

= (xk − vi)TA(xk − vi)

9/7/16	

 Clustering in Big Data	

 16	

Prototypes
V=F(U,X)

€

uik = dikA djkA()
2

m−1

j=1

c
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

€

vi =

(uik)mxk
k=1

n
∑

(uij)m
j=1

n
∑

HCM

€

uik =
1 dikA ≤ djkA

, j ≠ i

0 otherwise

⎧
⎨
⎪

⎩ ⎪

⎫
⎬
⎪

⎭ ⎪

€

vi =

uikxk
k=1

n
∑

uik
k=1

n
∑

FCM

Partition
U=G(V,X)

€

dikA = xk − vi
A

= (xk − vi)TA(xk − vi)

€

Ap× p positive definite

limit=
m1+

limit=
m1+

€

vi =

wi(uik)mxk
k=1

n
∑

wi(uij)m
j=1

n
∑

Prototypes
V=F(U,X)

9/7/16	

 Clustering in Big Data	

 17	

wFCM

€

min
(U,V)

Jmw(U,V : X) = wk(uik)m
i=1

c
∑

k=1

n
∑ xk − vi

A

2⎧
⎨
⎩

⎫
⎬
⎭

Inputs X ⊂ Rp

Unknowns U ∈ Mfcn V={v1,…,vc} ⊂ Rcp

n fixed weights {wk} ⊂ (0,∞)

€

uik = dikA djkA()
2

m−1

j=1

c
∑

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−1

Partition
U=G(V,X)

ONLY Ch
ange

(Bezd
ek, 1

981)

9/7/16	

 Clustering in Big Data	

Outputs

€

(U*,V*) ∈ Mfcn × ℜ
cp

User Picks c, m, ε, T,

€

∗
A
, ∗

err

AO

Input Unlabeled Object data: X ⊂ Rp

WHILE [t<T and]

€

Vt+1 − Vt
err

> ε

WEND

AO Loop

€

V0 = (v10,…, vc0)∈ ℜ cpInitialize

t=0

U0 = G(V0,X)

V1 = F(U0,X) ---------> % For loop startup

Ut+1 = G(Vt+1,X) % Next partition

Vt+2 = F(Ut+1,X) % Next prototypes

18	

9/7/16	

 Clustering in Big Data	

 19	

What is Progressive Sampling ?

Termination
Test t(XS)

XS failed

XS passed

ΔX ⊂ X-XS
XS = XS+ΔX

Sample XS ⊂ X

(US, VS)LFCM

(US, VS, DS)LNERF

eFFCM
geFFCM

eNERF

(PS, pS, µS, ΣS)LEM geFEM

Get literal A*[XS]

Extend A*[XS] → A[X-XS]

X

9/7/16	

 Clustering in Big Data	

 20	

What is Extensibility ?

€

Algorithm A : X ⊂ ℜ p  A[X] ⊂ ℜ q

Literal A*[X]

A*[X]

Approx. A[X]=A*[XS]||A[X-XS] ≅

Sample XS ⊂ X

Process

A*[XS] Extend A[X-XS]

9/7/16	

 Clustering in Big Data	

 21	

(Non-Iterative) Generalized extension of
Fuzzy c-Means [FCM  eFFCM/geFFCM]

Note: also works for HCM

Sample XS ⊂ X

Process FCM[XS]	

Works as a classifier on X-XS, but trained wo labels !

FCM[XS] → FCM[X-XS] Extend

€

uik = xk − vi,S
A

xk − vj,S
A

⎛
⎝
⎜

⎞
⎠
⎟

2
m−1

j=1

c
∑

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

= ϕ(VS,X − XS)

 FONC for
U to

min Jm	

€

{ vi,S vj,S} = VS

€

(X − XS) ∍ xk

with prototypes VS and xk∈ X-XS

Remark; The extension step usually takes ~ 1% of overall CPU time

9/7/16	

 Clustering in VL Data	

 22	

(Non-Iterative) Generalized Extension of EM
(Gaussian Mixture Decomp.) [EM → geFEM]

Sample XS ⊂ X

Process EM[XS]	

EM[XS] → EM[X-XS] Extend

€

pik =piS gik pjS gjk
j =1

c
∑

 FONC for
U=P to
min ln(L)	

€

{µ iS }

€

(X − XS) ∍ xk

with priors {piS}, means {µiS},
covariances {ΣiS} and xk∈ X-XS

€

gik = exp −0.5 * xk − µ iS
ΣiS
−1

2⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ 2π()

s
ΣiS

€

{ΣiS }

€

{piS }

Works as a classifier on
X-XS, trained wo labels !

9/7/16	

 Clustering in Big Data	

 23	

COMPARE
9% vs 100% !

Example: PS + E
with FCM on an

Typical Output Images

Indian Satellite
(Very Small

Landsat Image)

9/7/16	

 Clustering in Big Data	

 24	

Incremental/Distributed Clustering in BIG Data

Split data

€

O = ∪Oj

P1	

P2	

PM	

Processors

U1(c1)	

U2(c2)	

UM(cM)	

Partitions

O1

O2

OM

Chunks Merge Clusters

€

U(c) = Φ {Uj(cj) }

Samples contain
same information?

Same c for
all, or not?

How to merge
results?

3 Problems for the Distributed Clustering Approach

Hore/Hall/Goldgof/Gu/Maudsley/Darkazanli (2009, oFCM). A scalable
framework for segmenting MRIs, J Signal Proc. Syst. 54(1-3), 183–203.

oFCM = “on line” FCM

Eschrich/Ke/Hall/Goldgof (2003, brFCM). Fast accurate fuzzy
clustering through data reduction. IEEE TFS, 11(2), 262–270.

brFCM = “bit reduct.” FCM

Hore, Hall, Goldgof (2007, spFCM). Single pass
fuzzy c- means, Proc. FUZZ-IEEE 2007, 1-7.

spFCM = “single pass” FCM

Compression for image data, uses wFCM algorithm, (loadable) implementation

Uses wFCM algorithm, partially distributed VL implementation

 Incremental/Distributed c-Means Clustering in VL Data

Uses wFCM algorithm, fully distributed VL implementation

9/7/16	

 25	

Clustering in Big Data	

 All 3 are generalizations of HCM (k-means) when m = 1

9/7/16	

 Clustering in Big Data	

 26	

spFCM=“single pass” and oFCM = “on line” FCM

€

ωi = uik
k=1

nj

∑ ;1≤ i ≤ cRowsums of U
after pass j ≥1

Split data

€

X = ∪Xj : n = nj∑

First pass

€

FCM X1() = (U,V)

€

w = ([1],Ω) = (1,1,…,1
nj times
     ,ω1,…,ωc)weights for wFCM

before pass j>1

9/7/16	

 Clustering in Big Data	

 27	

Architecture of spFCM : c is chosen and fixed by user

Split data

€

X = ∪Xj

X1

X2

Subsets

XM

€

FCM X1()

Clustering Weights and prototypes

N=n1

€

w,V1

€

wFCM X2 ∪V1()N=c+n2

€

w,V2

€

wFCM XM ∪VM-1()N=c+nM

A crisp/fuzzy partition of XVL is built using the
HCM/FCM FONCs to compute U with the final V’s

9/7/16	

 Clustering in Big Data	

 28	

Architecture of oFCM : c = “max” is same for all blocks

Split data

€

X = ∪Xj

X1

X2

Subsets

XM

€

FCM X2()

€

Ω2V2

€

FCM XM()

€

ΩMVM

€

FCM X1()

Clustering
Weighted

 prototypes

€

Ω1V1

€

wFCM ΩjVj
j=1

M


⎛

⎝
⎜

⎞

⎠
⎟

w = (Ω1,…ΩM)

A crisp/fuzzy partition of XVL is built using
the HCM/FCM for U with the final V’s

FSL ~ oFCM best segment raw images : SPM worst

9/7/16	

 Clustering in Big Data	

 29	

Visual comparison of segmentation with spfcm/ofcm to EM

oFCM spFCM SPM(EM) FSL(EM) Raw T1

1.
5T

,
#
38

,
M

N
01

8
3T

,
#
70

,
VO

L0
60

9/7/16	

 Clustering in VL Data	

 30	

3
Ev

al
ua

ti
on

 C
ri
te

ri
a

Run time (time LFCM/time BD Approximation) 9 data sets	

Adjusted Rand Index (-ε ≤ ARI ≤ 1):
H(U) = maxcol. hardened U
 ARI1(H(U) | UGT)
 ARI2(H(U), H(ULFCM))

 Labeled data
 Unlabeled data	

(Soft) ARIs (-ε ≤ ARIs < 1) matches
approximate/literal fuzzy U’s ARIs(U, ULFCM))

6 unlabeled MRI
image data sets	

9/7/16	

 Clustering in VL Data	

 31	

MNIST Data: n=70,000, p=784, c=10

Each Image: 28 x 28

Each Pixel pij: 0 to 255

Each Pixel Normalized:
(pij/255) so 0 to 1

Each Vector: 784 values
p = (p11,…, pij,…, p28,28)

Presumably c = 10, but …
this data does NOT cluster well

9/7/16	

 Clustering in VL Data	

 32	

MNIST Data n=70,000, p=784, c=10
(Typical Results)

rseFCM
Fastest
~ 20:1

oFCM best match to UGT
rseFCM best match to ULFCM

LFCM line (----) is ARI match of H(ULFCM) to UGT

Other graphs show ARI matching of H(UVL) to UGT

Approximation quality of VL-FCMs: compare other graphs to LFCM

9/7/16	

 Clustering in VL Data	

 33	

2D15 Data

n=5000
p=2
c=15

9

1) Speedup Factor or Run-Time: This criteria represents
an actual run-time comparison. When the LFCM or KFCM
solution is available, speedup is defined as tfull/tsamp, where
these values are times in seconds for computing the cluster
centers V for the vector data algorithms and the membership
matrix U for the kernel algorithms. In the cases where LFCM
and KFCM solutions are unable to be computed, we present
run-time in seconds for the various VL algorithms.

2) Adjusted Rand Index: The Rand index [38] is a measure
of agreement between two partitions of a set of objects. A
Rand index of 1 indicates perfect agreement, while a Rand
index of 0 indicates perfect disagreement. The version that
we use here, the adjusted Rand index (ARI), is a bias-
adjusted formulation developed by Hubert and Arabie [39]. To
compute ARI, we first harden the fuzzy partitions by setting
the maximum element in each row of U to 1, and all else to
0. We use ARI to compare the clustering solutions to ground-
truth labels (when available), and also to compare the VL data
algorithms to the literal FCM solutions.

3) Fuzzy Adjusted Rand Index: The fuzzy ARI is a fuzzy
formulation of Hubert and Arabie’s ARI that was developed
by Anderson et. al [40]. With fuzzy ARI, we can compare the
fuzzy partitions directly. This allows us to directly compare
the fuzzy outputs of the VL FCM algorithms to the literal im-
plementations. A downside of fuzzy ARI is that two identical
fuzzy partitions can be identical, but not have a fuzzy ARI
equal to 1. Fuzzy ARI is only equal to 1 when comparing two
identical hard partitions. Hence, it is best used as a relative
measure of accuracy. We do not use fuzzy ARI to compare
fuzzy partitions to crisp ground-truth labels; we found that
these comparisons did not yield any additional information
over using hardened partitions with ARI.

Note that the sFCM, SPFCM, OFCM, and brFCM
algorithms—and the analogous kernel variants—do not pro-
duce full data partitions; they produce cluster centers as output.
Hence, we cannot directly compute ARI and fuzzy ARI for
these algorithms. To complete the calculations, we used the
Extension step to produce full data partitions from the output
cluster centers. The Extension step was not included in the
speedup factor or run-time calculations for these algorithms
as these algorithms were originally designed to return cluster
centers, not full data partitions. However, we observed in our
experiments that the Extension step added a nearly negligible
amount of time to the overall run-time of the algorithms.

B. Performance on labelled data
We compared the performance of the VL FCM algorithms

on the following labeled data sets:
1) 2D154 (n = 5, 000, c = 15): These data are composed

of 5,000 2-dimensional vectors, with a visually-preferred
grouping into 15 clusters. Figure 2 shows a plot of these
data. For the kernel-based algorithms, an RBF kernel
with � = 1 was used.

2) MNIST (n = 70, 000, c = 10): This data set is a
subset of the collection of handwritten digits available

4The 2D15 data were designed by Ilia Sidoroff and can be downloaded at
urlhttp://cs.joensuu.fi/ isido/clustering/.

0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feature 1

Fe
at

ur
e

2

Student Version of MATLAB

Fig. 2: 2D15 synthetic data

from the National Institute of Standards and Technology
(NIST)5. There are 70,000 28 � 28 pixel images of
the digits 0 to 9. Each pixel has an integer value
between 0 and 255. We normalize the the pixel values
to the interval [0, 1] by dividing by 255 and concatenate
each image into a 784-dimensional column vector. For
the kernel-based algorithms, a 5-degree inhomogeneous
polynomial kernel was used, which was shown to be
effective in [19, 20, 41].

3) Forest6 (n = 581, 012, c = 7): These data are composed
of cartographic variables obtained from United States
Geological Survey (USGS) and United State Forest
Service (USFS) data [42]. There are 10 quantitative
variables, such as elevation and horizontal distance to
hydrology, 4 binary wilderness area designation vari-
ables, and 40 binary soil type variables. These features
were collected from a total of 581,012 30 � 30 meter
cells, which were then determined to be one of 7 forest
cover types by the USFS. We normalize the features to
the interval [0, 1].

1) Vector data algorithms: The results of the VL data
algorithms on the 2D15 data set are shown in Fig. 3. The
plot of speedup is shown in view (a). The sFCM algorithm
is the fastest, with SPFCM second, and OFCM third. SPFCM
and OFCM also display degradation in speedup at the 1%
sample rate, where the number of data chunks is greater than
the number of objects in each chunk (there are 50 objects
in each of the 100 chunks). The ARI, shown in view (b),
shows that the VL data algorithms perform on par with LFCM.
However, degradation in accuracy is exhibited by sFCM and
SPFCM at low sample rates. Furthermore, the SPFCM and
OFCM accuracy decreases slightly at the 50% sample rate,
which is contrary to our expectations. The best overall results
occur at the 20% and 30% sample rates.

Figure 4 show the performance of the VL data algorithms
on the MNIST data. Not surprisingly, the sFCM is again the
fastest algorithm, with SPFCM and OFCM showing slight
speedups. In view (b), we see that the OFCM has the best
accuracy, in terms of ARI; however, please notice that the
scale of the plot is between 0.04 and 0.15. In essence, all the
algorithms, including LFCM, are performing very poorly on
this data (in terms of accuracy relative to ground-truth labels).
These results are only slightly better than random assignment

5The MNIST data can be downloaded at http://yann.lecun.com/exdb/mnist/.
6The Forest data set can be downloaded at http://uisacad2.uis.edu/dstar/

data/clusteringdata.html.

rseFCM
Fastest
~ 60:1

oFCM best match
to GT and LFCM

9/7/16	

 Clustering in VL Data	

 34	

Forest Data n=581,012, p=54, c=7

rseFCM
Fastest
~ 16:1

rseFCM/spFCM best
matches to GT and LFCM

9/7/16	

 Clustering in VL Data	

 35	

SU ARI2 ARIs

22 0.97 0.66
13 0.98 0.66
2 1 0.66

108 1 0.66

SU ARI2 ARIs

18 0.99 0.66
13 0.98 0.66
4 1 0.66
50 1 0.66

SU ARI2 ARIs

7 1 0.66
8 0.98 0.66
4 1 0.66
8 1 0.66

p=1
rseFCM
spFCM
oFCM
brFCM

SU ARI2 ARIs

29 0.97 0.47
18 0.96 0.46
2 0.78 0.38

SU ARI2 ARIs

24 1 0.47
13 0.96 0.46
2 0.93 0.44

SU ARI2 ARIs

8 1 0.47
7 0.96 0.46
3 1 0.47

0.1% samples 1% samples 10% samples

p=3
rseFCM
spFCM
oFCM

MRI Image Data n ~ 4x106, p=1 or 3, c=3

SU = “speed up” : ARI2(H(U), H(ULFCM)): ARIs(U, ULFCM))

9/7/16 Clustering in Big Data	

 36	

BIG Dissimilarity data Input

€

DN×N = [dij] : dij = dji ≥ 0∀ i, j; dii = 0∀ isiVAT samples DN
and reorders Dn

1

2

3 4

5

9/7/16	

 Clustering in Big Data 37

sVAT/siVAT with maximin sampling for BIG data

DNxN : Dij ≥ 0 ; Dii = 0 : D = DT

c’ ≥ c An (OVER) estimate of c

n ≤ 6000 Approximate sample size

m1 = 1 (arbitrary) o1 = 1st Prototype (Index)
d = (d1,…dN) = (D11,…D1N) search array

Input

Initialize

Get c’ Maximin Samples; i.e.,
Get indices {mi} of

€

(c') prototypes= {om1 ,…,omk ,…,omc'
}

9/7/16	

 Clustering in Big Data 38

▲	

▲	

▲	

▲	

■	

■	

■	

■	

●	

●	

●	

Prototype Selection Rule : GET POt=ot
as far from {o1,…,omt-1

} as possible by
finding maximin of distance tuples (may
need paging)

PO1=o1 (m1=1)
PO2=o2 (m2=s)

PO3=oj (m3=j)

What are Maximin Samples?

9/7/16	

 Clustering in Big Data 39

C2

Cc’

C1

Get crisp 1-np (HCM) clusters of {omk } - (may need paging)

●	

●	

●	

o1

●	

●	

■	

■	

■	

■	

oc’

■	

■	

▲	

▲	

▲	

▲	

o2

▲	

▲	

9/7/16	

 Clustering in Big Data 40

C1

●	

●	

●	

●	

Cc’ ■	

■	

■	

■	

■	

■	

 C2

▲	

▲	

▲	

▲	

▲	

▲	

▲	

 ▲	

▲	

Randomly Sample cluster Ct times

€

nt = n|Ct |
N

⎡

⎢
⎢

⎤

⎥
⎥

€

n= (n1 ++nc')

9/7/16	

 Clustering in Big Data 41

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

●	

●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

 ●	

DN = ●	

iVAT(Dn) ≈ iVAT(DN) (for visual assessment)
MST(Dn) ≈ MST(DN) (for big data clusiVAT)

▲	

■	

●	

●	

▲	

▲	

 ▲	

●	

■	

 ●	

 Dn =

9/7/16
 Clustering in Big Data	

 42	

A second approach: e spec VAT for VL data

espec iVAT image I(D’*)
of n = 2500 samples

Wang/Geng/Bezdek/Leckie/Kotagiri, (2010). spec-VAT for cluster analysis, IEEE TKDE.

DVL=D(X) is unloadable ~ O(1012)

N = 3,000,000

9/7/16	

 Clustering in Big Data	

 43	

X = Gaussian Clusters: c = 10, N = 1,000,000, p = 2

c’ = 20 prototypes () and 1-np partition (|) of X

9/7/16	

 Clustering in Big Data	

 44	

n = 100 random samples from the 20 partitions

9/7/16	

 Clustering in Big Data	

 45	

clusiVAT image of the n = 100 samples implies c = 10

siVAT image suggests
that c = 10

So clusiVAT will cut
the 9 largest edges
in the MST on Dn

9/7/16	

 Clustering in Big Data	

 46	

MST on the n = 100 samples

siVAT image tells us to cut
the 9 green edges in MST

9/7/16	

 Clustering in Big Data	

 47	

ClusiVAT 10-partition of the n = 100 samples

9/7/16	

 Clustering in Big Data	

 48	

clusiVAT 10-partition of the BIG data: N = 1,000,000

99.92% partition accuracy

Errors

9/7/16	

 Clustering in VL Data	

 49	

Time : CPU time in secs

Partition Accuracy of crisp U

UGT = “ground truth” partition of crisp labels

€

 PA(U |UGT) =
UGT,U

n
=

ni
i=1

c
∑

n
=

matched
tried

⎛

⎝
⎜

⎞

⎠
⎟

9/7/16	

 Clustering in Big Data	

 50	

25 run averages for 12 small sets of CS Gaussian Clusters

9/7/16	

 Clustering in Big Data	

 51	

time, secs
accuracy,%

Mean averages for 12 BIG sets of CS
Gaussian Clusters. Ave. Size N = 450,000

time, secs
accuracy,%

Mean averages for 12 BIG sets of non-CS
Gaussian Clusters. Ave. Size N = 450,000

CURE ~ 30 times slower; 2nd best accuracy

clusiVAT is fastest AND most accurate

9/7/16	

 Clustering in Big Data	

 52	

time, secs
accuracy,%

Forest Data N = 581,012, p=54, c=7 (labeled classes)

10 continuous features 4 binary wilderness types 40 binary soil types

siVAT image on n = 70
Forest samples

k = 7 clusters ?
Probably k ≥ 20

9/7/16	

 Clustering in Big Data	

 53	

KDD-99 Cup data: (22 simulated attacks + normal data)  c = 23

time, secs 76.0 124.8 120.4 138.5 841.6

 c’iVAT hkm spkm olkm CURE

97.06 94.25 96.45 94.87 91.54 accuracy,%

41 features in [0, 1] c = 23 class labels N = 4,292,637

siVAT image
for n = 230

Denial of Service (DOS)
Users to Root (U2R)
Remote to Local (R2L)
Probing Attacks (PROBE)

4 (major) attack types

9/7/16	

 Clustering in Big Data	

 54	

A few acceleration schemes for literal algorithm A

9/7/16	

 Clustering in Big Data	

 55	

A few acceleration schemes for A = fuzzy c-means

9/7/16	

 Clustering in VL Data	

 56	

rseFCM

Superiority to pseFCM increases with n

Faster than spFCM/oFCM for large n

Good Approximation to LFCM clusters

Average speedup of LFCM ~ 30:1

Extension Non-iterative scaling for many algorithms
typically incurs about 1% of total CPU time

Sampling
Three types (random, progressive,
Maximin). Easily adaptable for extensions
to Big Data with many other algorithms

9/7/16	

 Clustering in VL Data	

 57	

spFCM Retains “history” of clusters as more
data chunks are added to processing

oFCM No history retention; useful for
on-line streaming analysis (of chunks)

brFCM
Excellent acceleration for 1D images

Average speedup of brFCM ~ 100:1

9/7/16	

 Clustering in Big Data	

 58	

Recommendations: Big Data fuzzy c-Means
AND its special case, HCM = “k-means” at m=1

No

KNs Loadable ?

Decrease s?

Yes

Yes

Yes

kFCM

akFCM

akFCM

okFCM

KNN Loadable?

kFCM/kHCM

No

No

No

No

Bin XN ?

Need speed ?

XN >10 chunks ?

Yes

Yes

Yes

Yes

brFCM

rseFCM

oFCM

spFCM

XN Loadable? LFCM

FCM/HCM

No

No

9/7/16 Clustering in Big Data	

 59	

ClusiVAT works (so far !)

Things to fix and do

the siVAT image usefully estimates c before clustering 	

is EXACT (scalable) SL when DI > 1  	

is much more accurate than batch and incremental k-means  	

is 25-250 times faster than CURE  	

SL can go awry if data is very “stringy”  	

Next up: incremental clusiVAT for streaming data ! 	

9/7/16 Clustering in Big Data	

 60	

"Data-driven decisionmaking is another sign that the role of the campaign
pros in Washington who make decisions on hunches and experience is rapidly
dwindling, being replaced by quants and computer coders who can crack
massive data sets for insight. As one official put it, the time of "guys
sitting in a back room smoking cigars, saying 'We always buy 60 Minutes'"
is over. In politics, the era of big data has arrived.”

M. Scherer, Inside the Secret World of Quants and Data Crunchers who helped ObamaWin, Time Magazine, !
Nov. 19, 2012, 56-60.!

ONSLAUGHT OF BIG DATA BUZZWORDS

[7 Vs: volume, velocity, veracity, value,
variety, validity, value !!!]

9/7/16	

 Clustering in Big Data 61

OK Grandpa
… Time to
wrap it up	

Grandma
is laughing
at you !	

9/7/16	

 Clustering in Big Data	

 62	

9/7/16	

 Clustering in Big Data	

 63	

G’Day ! 	

Thanks !

9/7/16
 Ground Truth Bias in External CVIs
 64

Questions, pdf’s of today’s talk and papers	

 jcbezdek@gmail.com	

With these aids my hearing is about 8% of normal	

I will try to answer questions, but a better	

result follows if you email them to me.	

