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Wahoo and Ulua	


Maui, Hawaii	





I. BIG data HCM/FCM/GMD 

Sockeye Salmon, Seattle, 1983 
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Today’s Talk: Cluster 
Analysis in BIG DATA 

HCM/FCM/EM~GMD   

c-means for BIG data 

II. SL + siVAT for BIG data 

sVAT visual assessment 

clusiVAT algorithm 
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Our Big Data Gang 

Leckie 

Bezdek 

Rao 

Hathaway 

Extending fuzzy and probabilistic clustering to VL 
data sets, Comp. Stat. And Analysis, 2006. 

Approximate clustering in very large relational data, 
IJIS, 2006. 

Complexity reduction for large image processing, 
IEEE SMC, 2002. 

Scalable visual assessment of cluster tendency for 
large data sets, Pattern Recognition, 2006. 

Fuzzy c-Means Algorithms for Very Large Data, 
IEEE TFS,  2012. 

 A hybrid approach to clustering in big data, IEEE 
Trans. Cybernetics, 2016. 
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Hall 
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Suthar 
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Kumar 
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2 Kinds of Basic Numerical Data for Pattern Recognition 

Objects      O=  {o1, …, on} : oi = i-th physical object  

Data   xji =  j-th (measured) feature of xi : 1 ≤ j ≤ p 
Object   X  =  {x1, …, xn} ⊂ Rp : xi = feature vector for oi  

We often convert X→D with distance   

€ 

dij = xi − xj

Relational  R = [rij] = relationship (oi, oj) ) or (xi, xj)  
  Data   sij = pairwise similarity    (oi, oj) or (xi, xj)    

€ 

dij

dij = pairwise dissimilarity (oi, oj) or (xi, xj) 	



Typically       
(R = D)   

    

€ 

dii = 0 : 1 ≤ i ≤ n
dij > 0 : 1 ≤ i,j ≤ n
dij = dji : 1 ≤ i ≠ j ≤ n

(Positive-definite) 

(Symmetric) 

Sizes : n = # samples; p = # dimensions 
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10>18  Exa –Yikes ! (B I G  DATA)	



1015    Peta - Monster 

Bytes     Big Data (BD) in size (n, p)	



103   Kilo – small	



106   Mega - medium	



109     Giga - large	



1012       Terra – getting’ up there	



We can’t cluster or image data this big (in a single computer)… so …	



How Big is static BIG Data ? 

Most BIG data methods build “cluster-friendly”  
(loadable) subsets by sampling or chunking 
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BDN 

s 

s 

s 

SD1 

SD2 

SDM 

SDn 

BDN-SDn 

s 

e 

SD1 

SD2 

SDM 
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BD∞ = X∞ or D∞ (Population) 

BDN = XN or DN 
(Unloadable) 

Four Data Levels 

SDn = Xn or Dn 
(Loadable) 

Sn = XS or DS 
(Sample)  

10	



Random 
Progressive 
Maximin 

Big Data Objective = ACCELERATION  

Big Data Objective = FEASIBILITY  
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If Xn or Dn is Loadable we  
can Quantitatively Compare  

Lit-Clusters ↔ Approx. Clusters 

If XN or DN is Unloadable  
Comparison is impossible 

case 2 validity rests with  
“good” case 1 examples 

Case 2 BD methods often provide acceleration and feasibility 
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If XN or DN is Unloadable …  
there are 3 basic approaches to scaling up  

A*= [U*, V*] = exact (literal) partition and prototypes 
A  = [U, V]  = (any) approximation to A* by (1) or (2) 

Many of these methods can be used with other pattern 
recognition algorithms. For clustering, we let … 

Cluster a sample, non-iterative extension 

Incremental/Distributed data clustering  

Kernel-based methods, e.g., kFCM 
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col k ➠ M’ship of ok in each cluster  

Partition  
Matrices  

row i ➠ M’ship of all ok’s in cluster i 
o1       ok      on       Objects  

    

€ 

U =

u11  u1k  u1n

  

ui1  uik  uin

  

uc1  uck  ucn

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

Membership  
Functions  

ui(ok)=uik=M’ship 
of ok in cluster i  

ui:O[0,1] 
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Mhcn 

  

€ 

uik = 1
i
∑

  

€ 

uik > 0
k
∑

    

€ 

uik ∈ {0,1}

1 0 0 0  
0 1 0 0 
0 0 1 1 

Mfcn 

same 

same 

    

€ 

uik ∈ [0,1]

1      0 
0      0  
0      1  

.07   .44 

.91   .06  

.02   .50  

Mpcn 

  

€ 

uik ≤ c
i=1

c
∑

same 

same 

1 .44      
0 .52      
1 .38     

1            
0  
0        

.07 

.91 

.02 

Row sums 

Col sums 

M’ships 

Set Name 

Take a 2nd 

Example 

Crisp Fuzzy/Prob Possibilistic 

€ 

⊂

€ 

⊂
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€ 

U∈Mfcn
V∈ℜcp

minimize Jm(U,V) = uik
m∑∑ xk − vi A

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Optimization  
Problem, m≥1 

Unknowns 

Clustering in Big Data	



Inputs Object data   

€ 

X = {x1,…,xn } ⊂ ℜp

(Fuzzy) Partition     

€ 

U∈Mfcn

Prototypes 
  

€ 

V = {v1,…,vc } ∈ℜ
cp

  

€ 

Jm(U,V ) = uik
m xk − vi

A

2

i=1

c
∑

k=1

n
∑Objective function 

  

€ 

xk − vi A
2

= (xk − vi )TA(xk − vi )



9/7/16	

 Clustering in Big Data	

 16	



Prototypes 
V=F(U,X) 

  

€ 

uik = dikA djkA( )
2

m−1

j=1

c
∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−1

  

€ 

vi =

(uik )mxk
k=1

n
∑

(uij )m
j=1

n
∑

HCM 

  

€ 

uik =
1 dikA ≤ djkA

, j ≠ i

0 otherwise

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 

  

€ 

vi =

uikxk
k=1

n
∑

uik
k=1

n
∑

FCM 

Partition 
U=G(V,X) 

  

€ 

dikA = xk − vi
A

= (xk − vi )TA(xk − vi )   

€ 

Ap× p positive definite

limit= 
m1+ 

limit= 
m1+ 



  

€ 

vi =

wi(uik )mxk
k=1

n
∑

wi(uij )m
j=1

n
∑

Prototypes 
V=F(U,X) 
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wFCM 
  

€ 

min
(U,V)

Jmw(U,V : X) = wk(uik )m
i=1

c
∑

k=1

n
∑ xk − vi

A

2⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

Inputs X ⊂ Rp 

Unknowns U ∈ Mfcn  V={v1,…,vc} ⊂ Rcp 

n fixed weights {wk} ⊂ (0,∞ ) 

  

€ 

uik = dikA djkA( )
2

m−1

j=1

c
∑

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

−1

Partition 
U=G(V,X) 

ONLY Ch
ange 

(Bezd
ek, 1

981) 
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Outputs   

€ 

(U*,V*) ∈ Mfcn × ℜ
cp

User Picks c, m, ε, T, 
  

€ 

∗
A
, ∗

err

AO 

Input Unlabeled Object data: X ⊂ Rp 

WHILE [t<T and                   ]  
  

€ 

Vt+1 − Vt
err

> ε

WEND 

AO Loop 

  

€ 

V0 = (v10,…, vc0 )∈ ℜ cpInitialize  

t=0 

U0 = G(V0,X) 

V1 = F(U0,X) ---------> % For loop startup 

Ut+1 = G(Vt+1,X) % Next partition 

Vt+2 = F(Ut+1,X) % Next prototypes 

18	
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What is Progressive Sampling ?  

Termination  
Test t(XS) 

XS failed 

XS passed 

ΔX ⊂ X-XS  
XS = XS+ΔX 

Sample XS ⊂ X 

(US, VS)LFCM 

(US, VS, DS)LNERF 

eFFCM 
geFFCM 

eNERF 

(PS, pS, µS, ΣS)LEM geFEM 

Get literal A*[XS] 

Extend A*[XS] → A[X-XS] 



X 
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What is Extensibility ?      

€ 

Algorithm  A : X ⊂ ℜ p  A[X] ⊂ ℜ q

Literal A*[X] 

A*[X] 

Approx. A[X]=A*[XS]||A[X-XS] ≅ 

Sample XS ⊂ X 

Process 

A*[XS] Extend A[X-XS] 
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(Non-Iterative) Generalized extension of  
Fuzzy c-Means [FCM  eFFCM/geFFCM] 

Note: also works for HCM  

Sample XS ⊂ X 

Process FCM[XS]	



Works as a classifier on X-XS, but trained wo labels ! 

FCM[XS] → FCM[X-XS] Extend  

  

€ 

uik = xk − vi,S
A

xk − vj,S
A

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2
m−1

j=1

c
∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

−1

= ϕ(VS,X − XS )

 FONC for  
U to  

min Jm	



    

€ 

{ vi,S vj,S} = VS  

€ 

(X − XS ) ∍ xk

with prototypes VS and xk∈ X-XS 

Remark; The extension step usually takes ~ 1% of overall CPU time 
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(Non-Iterative) Generalized Extension of EM 
(Gaussian Mixture Decomp.) [EM → geFEM]  

Sample XS ⊂ X 

Process EM[XS]	



EM[XS] → EM[X-XS] Extend  

  

€ 

pik =piS gik pjS gjk
j =1

c
∑

 FONC for  
U=P to  
min ln(L)	



  

€ 

{µ iS }  

€ 

(X − XS ) ∍ xk

with priors {piS}, means {µiS}, 
covariances {ΣiS} and xk∈ X-XS 

  

€ 

gik = exp −0.5 * xk − µ iS
ΣiS
−1

2⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 2π( )

s
ΣiS

  

€ 

{ΣiS }

  

€ 

{piS }

Works as a classifier on 
X-XS, trained wo labels ! 
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COMPARE 
9% vs 100% !  

Example: PS + E 
with FCM on an 

Typical Output Images  

Indian Satellite 
(Very Small 

Landsat Image) 
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Incremental/Distributed Clustering in BIG Data  

Split data   

  

€ 

O = ∪Oj

P1	



P2	



PM	



Processors 

U1(c1)	



U2(c2)	



UM(cM)	



Partitions 

O1 

O2 

OM 

Chunks Merge Clusters 

  

€ 

U(c) = Φ {Uj(cj ) }

Samples contain 
same information?  

Same c for 
all, or not?  

How to merge 
results?  

3 Problems for the Distributed Clustering Approach  



Hore/Hall/Goldgof/Gu/Maudsley/Darkazanli (2009, oFCM). A scalable 
framework for segmenting MRIs, J Signal Proc. Syst. 54(1-3), 183–203.  

oFCM = “on line” FCM 

Eschrich/Ke/Hall/Goldgof (2003, brFCM). Fast accurate fuzzy 
clustering through data reduction. IEEE TFS, 11(2), 262–270. 

brFCM = “bit reduct.” FCM 

Hore, Hall, Goldgof (2007, spFCM). Single pass  
fuzzy c- means, Proc. FUZZ-IEEE 2007, 1-7. 

spFCM = “single pass” FCM 

Compression for image data, uses wFCM algorithm,  (loadable) implementation 

Uses wFCM algorithm,  partially distributed VL implementation 

 Incremental/Distributed c-Means Clustering in VL Data  

Uses wFCM algorithm, fully distributed VL implementation 

9/7/16	
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Clustering in Big Data	



 All 3 are generalizations of HCM (k-means) when m = 1 
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spFCM=“single pass” and oFCM = “on line” FCM  

  

€ 

ωi = uik
k=1

nj

∑ ;1≤ i ≤ cRowsums of U 
after pass j ≥1 

Split data   

€ 

X = ∪Xj  : n = nj∑

First pass   

€ 

FCM X1( ) = (U,V)

    

€ 

w = ([1],Ω) = (1,1,…,1
nj  times
     ,ω1,…,ωc )weights for wFCM 

before pass j>1 
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Architecture of spFCM : c is chosen and fixed by user 

Split data   

  

€ 

X = ∪Xj

X1 

X2 

Subsets 

XM 

  

€ 

FCM X1( )

Clustering Weights and prototypes 

N=n1   

€ 

w,V1

  

€ 

wFCM X2 ∪V1( )N=c+n2   

€ 

w,V2

  

€ 

wFCM XM ∪VM-1( )N=c+nM 

A crisp/fuzzy partition of XVL is built using the  
HCM/FCM FONCs to compute U with the final V’s 
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Architecture of oFCM : c = “max” is same for all blocks 

Split data   

  

€ 

X = ∪Xj

X1 

X2 

Subsets 

XM 

  

€ 

FCM X2( )   

€ 

Ω2V2

  

€ 

FCM XM( )   

€ 

ΩMVM

  

€ 

FCM X1( )

Clustering 
Weighted 

 prototypes 

  

€ 

Ω1V1

    

€ 

wFCM ΩjVj
j=1

M


⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

w = (Ω1,…ΩM)

A crisp/fuzzy partition of XVL is built using  
the HCM/FCM  for U with the final V’s 



FSL ~ oFCM best segment raw images : SPM worst 
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Visual comparison of segmentation with spfcm/ofcm to EM 

oFCM spFCM SPM(EM) FSL(EM) Raw T1 

1.
5T

, 
#
38

, 
M

N
01

8 
3T

, 
#
70

, 
VO

L0
60
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3 
Ev

al
ua

ti
on

 C
ri
te

ri
a 

Run time (time LFCM/time BD Approximation) 9 data sets	


Adjusted Rand Index (-ε ≤ ARI ≤ 1): 
H(U) = maxcol. hardened U  
                               ARI1(H(U) | UGT)        
                           ARI2(H(U), H(ULFCM)) 

   Labeled data 
   Unlabeled data	



(Soft) ARIs (-ε ≤ ARIs < 1) matches  
approximate/literal fuzzy U’s   ARIs(U, ULFCM))  

6 unlabeled MRI 
image data sets	





9/7/16	

 Clustering in VL Data	

 31	



MNIST Data: n=70,000, p=784, c=10 

Each Image: 28 x 28 

Each Pixel pij: 0 to 255 

Each Pixel Normalized:  
(pij/255) so 0 to 1 

Each Vector: 784 values 
p = (p11,…, pij,…, p28,28) 

Presumably c = 10, but … 
this data does NOT cluster well 
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MNIST Data n=70,000, p=784, c=10 
(Typical Results) 

rseFCM  
Fastest 
~ 20:1 

oFCM best match to UGT 
rseFCM best match to ULFCM 

LFCM line (----) is ARI match of H(ULFCM) to UGT 

Other graphs show ARI matching of H(UVL) to UGT 

Approximation quality of VL-FCMs: compare other graphs to LFCM 
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2D15 Data 

n=5000 
p=2 
c=15 

9

1) Speedup Factor or Run-Time: This criteria represents
an actual run-time comparison. When the LFCM or KFCM
solution is available, speedup is defined as tfull/tsamp, where
these values are times in seconds for computing the cluster
centers V for the vector data algorithms and the membership
matrix U for the kernel algorithms. In the cases where LFCM
and KFCM solutions are unable to be computed, we present
run-time in seconds for the various VL algorithms.

2) Adjusted Rand Index: The Rand index [38] is a measure
of agreement between two partitions of a set of objects. A
Rand index of 1 indicates perfect agreement, while a Rand
index of 0 indicates perfect disagreement. The version that
we use here, the adjusted Rand index (ARI), is a bias-
adjusted formulation developed by Hubert and Arabie [39]. To
compute ARI, we first harden the fuzzy partitions by setting
the maximum element in each row of U to 1, and all else to
0. We use ARI to compare the clustering solutions to ground-
truth labels (when available), and also to compare the VL data
algorithms to the literal FCM solutions.

3) Fuzzy Adjusted Rand Index: The fuzzy ARI is a fuzzy
formulation of Hubert and Arabie’s ARI that was developed
by Anderson et. al [40]. With fuzzy ARI, we can compare the
fuzzy partitions directly. This allows us to directly compare
the fuzzy outputs of the VL FCM algorithms to the literal im-
plementations. A downside of fuzzy ARI is that two identical
fuzzy partitions can be identical, but not have a fuzzy ARI
equal to 1. Fuzzy ARI is only equal to 1 when comparing two
identical hard partitions. Hence, it is best used as a relative
measure of accuracy. We do not use fuzzy ARI to compare
fuzzy partitions to crisp ground-truth labels; we found that
these comparisons did not yield any additional information
over using hardened partitions with ARI.

Note that the sFCM, SPFCM, OFCM, and brFCM
algorithms—and the analogous kernel variants—do not pro-
duce full data partitions; they produce cluster centers as output.
Hence, we cannot directly compute ARI and fuzzy ARI for
these algorithms. To complete the calculations, we used the
Extension step to produce full data partitions from the output
cluster centers. The Extension step was not included in the
speedup factor or run-time calculations for these algorithms
as these algorithms were originally designed to return cluster
centers, not full data partitions. However, we observed in our
experiments that the Extension step added a nearly negligible
amount of time to the overall run-time of the algorithms.

B. Performance on labelled data
We compared the performance of the VL FCM algorithms

on the following labeled data sets:
1) 2D154 (n = 5, 000, c = 15): These data are composed

of 5,000 2-dimensional vectors, with a visually-preferred
grouping into 15 clusters. Figure 2 shows a plot of these
data. For the kernel-based algorithms, an RBF kernel
with � = 1 was used.

2) MNIST (n = 70, 000, c = 10): This data set is a
subset of the collection of handwritten digits available

4The 2D15 data were designed by Ilia Sidoroff and can be downloaded at
urlhttp://cs.joensuu.fi/ isido/clustering/.
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Student Version of MATLAB

Fig. 2: 2D15 synthetic data

from the National Institute of Standards and Technology
(NIST)5. There are 70,000 28 � 28 pixel images of
the digits 0 to 9. Each pixel has an integer value
between 0 and 255. We normalize the the pixel values
to the interval [0, 1] by dividing by 255 and concatenate
each image into a 784-dimensional column vector. For
the kernel-based algorithms, a 5-degree inhomogeneous
polynomial kernel was used, which was shown to be
effective in [19, 20, 41].

3) Forest6 (n = 581, 012, c = 7): These data are composed
of cartographic variables obtained from United States
Geological Survey (USGS) and United State Forest
Service (USFS) data [42]. There are 10 quantitative
variables, such as elevation and horizontal distance to
hydrology, 4 binary wilderness area designation vari-
ables, and 40 binary soil type variables. These features
were collected from a total of 581,012 30 � 30 meter
cells, which were then determined to be one of 7 forest
cover types by the USFS. We normalize the features to
the interval [0, 1].

1) Vector data algorithms: The results of the VL data
algorithms on the 2D15 data set are shown in Fig. 3. The
plot of speedup is shown in view (a). The sFCM algorithm
is the fastest, with SPFCM second, and OFCM third. SPFCM
and OFCM also display degradation in speedup at the 1%
sample rate, where the number of data chunks is greater than
the number of objects in each chunk (there are 50 objects
in each of the 100 chunks). The ARI, shown in view (b),
shows that the VL data algorithms perform on par with LFCM.
However, degradation in accuracy is exhibited by sFCM and
SPFCM at low sample rates. Furthermore, the SPFCM and
OFCM accuracy decreases slightly at the 50% sample rate,
which is contrary to our expectations. The best overall results
occur at the 20% and 30% sample rates.

Figure 4 show the performance of the VL data algorithms
on the MNIST data. Not surprisingly, the sFCM is again the
fastest algorithm, with SPFCM and OFCM showing slight
speedups. In view (b), we see that the OFCM has the best
accuracy, in terms of ARI; however, please notice that the
scale of the plot is between 0.04 and 0.15. In essence, all the
algorithms, including LFCM, are performing very poorly on
this data (in terms of accuracy relative to ground-truth labels).
These results are only slightly better than random assignment

5The MNIST data can be downloaded at http://yann.lecun.com/exdb/mnist/.
6The Forest data set can be downloaded at http://uisacad2.uis.edu/dstar/

data/clusteringdata.html.

rseFCM  
Fastest 
~ 60:1 

oFCM best match 
to GT and LFCM 
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Forest Data n=581,012, p=54, c=7 

rseFCM  
Fastest 
~ 16:1 

rseFCM/spFCM best 
matches to GT and LFCM 
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SU ARI2 ARIs 

22 0.97 0.66 
13 0.98 0.66 
2 1 0.66 

108 1 0.66 

SU ARI2 ARIs 

18 0.99 0.66 
13 0.98 0.66 
4 1 0.66 
50 1 0.66 

SU ARI2 ARIs 

7 1 0.66 
8 0.98 0.66 
4 1 0.66 
8 1 0.66 

p=1 
rseFCM 
spFCM 
oFCM 
brFCM 

SU ARI2 ARIs 

29 0.97 0.47 
18 0.96 0.46 
2 0.78 0.38 

SU ARI2 ARIs 

24 1 0.47 
13 0.96 0.46 
2 0.93 0.44 

SU ARI2 ARIs 

8 1 0.47 
7 0.96 0.46 
3 1 0.47 

0.1% samples 1% samples 10% samples 

p=3 
rseFCM 
spFCM 
oFCM 

MRI Image Data n ~ 4x106, p=1 or 3, c=3 

SU = “speed up” : ARI2(H(U), H(ULFCM)): ARIs(U, ULFCM))  
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BIG Dissimilarity data Input   

€ 

DN×N = [dij ] :  dij = dji ≥ 0∀ i, j; dii = 0∀ isiVAT samples DN  
and reorders Dn 

1 

2 

3 4 

5 
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sVAT/siVAT with maximin sampling for BIG data 

DNxN : Dij ≥ 0 ; Dii = 0 : D = DT 

c’ ≥ c  An (OVER) estimate of c 

n ≤ 6000   Approximate sample size  

m1 = 1 (arbitrary)   o1 = 1st Prototype (Index) 
d = (d1,…dN) = (D11,…D1N)     search array 

Input 

Initialize 

Get c’ Maximin Samples; i.e.,  
Get indices {mi} of     

€ 

(c') prototypes= {om1 ,…,omk ,…,omc'
}



9/7/16	

 Clustering in Big Data 38 

▲	



▲	



▲	



▲	



■	



■	



■	


■	



●	

●	


●	



Prototype Selection Rule : GET POt=ot  
as far from {o1,…,omt-1

} as possible by  
finding maximin of distance tuples (may 
need paging) 

PO1=o1 (m1=1) 
PO2=o2 (m2=s) 

PO3=oj (m3=j) 

What are Maximin Samples? 
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C2 

Cc’ 

C1 

Get crisp 1-np (HCM) clusters of {omk } - (may need paging)  

●	

●	


●	

o1  

●	

●	



■	



■	



■	


■	


oc’  

■	


■	



▲	


▲	



▲	


▲	



o2  

▲	



▲	
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C1 

●	

●	


●	



●	



Cc’ ■	



■	



■	


■	

■	


■	

 C2 

▲	


▲	



▲	


▲	



▲	



▲	


▲	

 ▲	



▲	



Randomly Sample cluster Ct              times 
  

€ 

nt = n|Ct |
N

⎡ 

⎢ 
⎢ 

⎤ 

⎥ 
⎥ 

    

€ 

n= (n1 ++nc' )
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DN = ●	



iVAT(Dn) ≈ iVAT(DN) (for visual assessment)  
MST(Dn) ≈ MST(DN) (for big data clusiVAT) 

▲	



■	



●	



●	



▲	



▲	

 ▲	

●	

■	

 ●	

 Dn = 
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A second approach: e spec VAT for VL data 

espec iVAT image I(D’*)  
of n = 2500 samples  

Wang/Geng/Bezdek/Leckie/Kotagiri, (2010). spec-VAT for cluster analysis, IEEE TKDE. 

DVL=D(X) is unloadable ~ O(1012) 

N = 3,000,000 
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X = Gaussian Clusters: c = 10,  N = 1,000,000, p = 2 

c’ = 20 prototypes () and 1-np partition (|) of X  
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n = 100 random samples from the 20 partitions 
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clusiVAT image of the n = 100 samples implies c = 10 

siVAT image suggests 
that c = 10 

So clusiVAT will cut 
the 9 largest edges  
in the MST on Dn 
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MST on the n = 100 samples 

siVAT image tells us to cut 
the 9 green edges in MST 
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ClusiVAT 10-partition of the n = 100 samples  
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clusiVAT 10-partition of the BIG data:  N = 1,000,000 

99.92% partition accuracy  

Errors 
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Time : CPU time in secs 

Partition Accuracy of crisp U  

UGT = “ground truth” partition of crisp labels 

    

€ 

 PA(U |UGT ) =
UGT,U

n
=

ni
i=1

c
∑

n
=

# matched
# tried

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  



9/7/16	

 Clustering in Big Data	

 50	



25 run averages for 12 small sets of CS Gaussian Clusters 
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time, secs 
accuracy,% 

Mean averages for 12 BIG sets of CS 
Gaussian Clusters. Ave. Size N = 450,000 

time, secs 
accuracy,% 

Mean averages for 12 BIG sets of non-CS 
Gaussian Clusters. Ave. Size N = 450,000 

CURE ~ 30 times slower; 2nd best accuracy  

clusiVAT is fastest AND most accurate 
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time, secs 
accuracy,% 

Forest Data N = 581,012, p=54, c=7 (labeled classes) 

10 continuous features  4 binary wilderness types  40 binary soil types  

siVAT image on n = 70  
Forest samples  

k = 7 clusters ? 
Probably k ≥ 20 
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KDD-99 Cup data: (22 simulated attacks + normal data)  c = 23 

time, secs 76.0      124.8     120.4     138.5     841.6 

 c’iVAT     hkm       spkm       olkm      CURE 

97.06     94.25     96.45     94.87     91.54 accuracy,% 

41 features in [0, 1]  c = 23 class labels N = 4,292,637 

siVAT image  
for n = 230  

Denial of Service  (DOS) 
Users to Root      (U2R) 
Remote to Local    (R2L) 
Probing Attacks (PROBE) 

4 (major) attack types 
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A few acceleration schemes for literal algorithm A 
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A few acceleration schemes for A = fuzzy c-means 
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rseFCM 

Superiority to pseFCM increases with n 

Faster than spFCM/oFCM for large n  

Good Approximation to LFCM clusters 

Average speedup of LFCM ~ 30:1 

Extension Non-iterative scaling for many algorithms 
typically incurs about 1% of total CPU time 

Sampling 
Three types (random, progressive, 
Maximin). Easily adaptable for extensions 
to Big Data with many other algorithms  
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spFCM Retains “history” of clusters as more  
data chunks are added to processing 

oFCM No history retention; useful for 
on-line streaming analysis (of chunks) 

brFCM 
Excellent acceleration for 1D images 

Average speedup of brFCM ~ 100:1 
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Recommendations: Big Data fuzzy c-Means 
AND its special case, HCM = “k-means” at m=1 

No 

KNs Loadable ? 

Decrease s? 

Yes 

Yes 

Yes 

kFCM 

akFCM 

akFCM 

okFCM 

KNN Loadable? 

kFCM/kHCM 

No 

No 

No 

No 

Bin XN ? 

Need speed ? 

XN >10 chunks ? 

Yes 

Yes 

Yes 

Yes 

brFCM 

rseFCM 

oFCM 

spFCM 

XN Loadable? LFCM 

FCM/HCM 

No 

No 
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ClusiVAT works (so far !) 

Things to fix and do 

the siVAT image usefully estimates c before clustering 	



is EXACT (scalable) SL when DI > 1  	



is much more accurate than batch and incremental k-means  	



is 25-250 times faster than CURE  	



SL can go awry if data is very “stringy”  	



Next up: incremental clusiVAT for streaming data ! 	
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"Data-driven decisionmaking is another sign that the role of the campaign  
pros in Washington who make decisions on hunches and experience is rapidly  
dwindling, being replaced by quants and computer coders who can crack  
massive data sets for insight. As one official put it, the time of "guys 
sitting in a back room smoking cigars, saying 'We always buy 60 Minutes'"  
is over. In politics, the era of big data has arrived.”  

M. Scherer, Inside the Secret World of Quants and Data Crunchers who helped ObamaWin, Time Magazine, !
Nov. 19, 2012, 56-60.!

ONSLAUGHT OF BIG DATA BUZZWORDS 

[7 Vs: volume, velocity, veracity, value,  
variety, validity, value !!! ] 
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OK Grandpa 
… Time to  
wrap it up	



Grandma 
is laughing 
at you !	
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G’Day ! 	



Thanks ! 



9/7/16
 Ground Truth Bias in External CVIs
 64


Questions, pdf’s of today’s talk and papers	



 jcbezdek@gmail.com	



With these aids my hearing is about 8% of normal	



I will try to answer questions, but a better	


result follows if you email them to me.	




